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Abstract - We propose a combination of tools and 

techniques for improving OTT delivery to devices with 

different decoding, rendering, and connection capabilities. 

These tools and techniques include: dynamic packaging, 

dynamic devices detection, dynamic manifest generation, 

rules engine, analytics engine, and context aware encoding 

(CAE). We explain how such tools and techniques can be 

implemented using current cloud computing and CDN 

platforms and tuned to achieve optimal end-to-end 

performance, delivering best possible user experience and 

minimizing transcoding-, bandwidth- and storage costs. 

INTRODUCTION 

Over the course of the last 2 decades OTT streaming has 

evolved from a pioneering concept to a mainstream 

technology used to deliver media content. Important steps in 

this evolution included:  

● the invention of the concept of adaptive bitrate 

(ABR) streaming [1,2],  

● the emergence of CDNs and HTTP-based delivery 

model are most practical method of mass-scale 

delivery,  

● the emergence of suitable standard codecs, file 

formats and system specifications (e.g. H.264 [3], 

HEVC [4], HLS [5], DASH [6], and most recently 

CMAF [7],  

● consolidation of DRMs to fewer recognized systems 

(e.g. FairPlay, Widevine, PlayReady) that are 

broadly supported, and 

● improvements in client technologies, such as 

MSE [8] and EME [9] functions supported by most 

popular web browsers.  

However, despite all these improvements and 

consolidations to fewer choices of codecs, formats, and 

DRMs, modern-days OTT media delivery systems still face 

fragmentation in ways different client devices support them.  

For example, most existing devices can decode H.264, 

including streams encoding using H.264 Main and High 

profiles. Some newer devices, most notably Apple devices 

with iOS 11 or later, can also decode HEVC. However, many 

older devices, including Android devices with versions prior 

to 6.0, most likely can only play H.264 baseline. Likewise, it 

is not a secret that to send streams to Apple devices, one has 

to use HLS, while DASH is preferred for Androids and 

SmartTVs. Moreover, some older TVs and game consoles can 

only play Smooth streaming, and some other legacy devices 

that can only play progressive download streams. The support 

of different types of DRMs across different devices is also 

fragmented, as illustrated in Figure 1. 

 

FIGURE. 1: SUPPORT OF DRMS ACROSS DIFFERENT DEVICES. 

 

Known methods of streaming delivery considering 

fragmentation of existing codecs and formats include: 

● creation of separate copies of streams, packaged 

specifically to different delivery formats (HLS, 

DASH, Smooth, etc.) and DRMs (PlayReady, 

FairPlay, Widevine, etc.), 

● dynamic transmuxing and dynamic encryption of 

streams encoded and stored in some intermediate 

format to match requirement of final delivery 

formats and DRMs, 

● creation of separate encoding profiles (and ABR 

stacks of streams) using each codec (e.g. H.264, 

HEVC, H.264/baseline), and/or 

● creation of mixed encoding profiles, where low-

bitrate streams are targeted to legacy devices and 

hence encoded using H.264 baseline, while higher 

bitrate streams are encoded using H.264 main and 

High profiles (see Figure 2).  

Naturally, creating many versions of encoded streams for 

different codecs, protocols and DRMs dramatically increases 

transcoding, storage and CDN costs. It also affects efficiency



 

FIGURE. 2: TYPICAL ENCODING PROFILES USED FOR HLS STREAMING (SOURCE APPLE TECH NOTE TN2224,2004). 

 
FIGURE 3: HIGH-LEVEL ARCHITECTURE OF CLOUD BASED VIDEO DELIVERY SYSTEM. 

 

of the CDNs, as their edge cache space is limited, and the use 

of multiple copies of same content will inevitably increase 

cache miss probability. The use of dynamic (or just-in-time) 

transmuxing and encryption could, in principle, minimize 

storage, transcoding, and CDN costs. However, they require 

a whole set of additional system elements to be implemented. 

This includes dynamic device detection, dynamic generation 

of manifests, and dynamic delivery of final streams over 

CDNs, and means for doing all these operations at scale and 

sufficiently close to the edge to achieve practically acceptable 

delays.  

Similarly, the use of separate encoding profiles for 

different codecs or codec profiles/level combinations sounds 

wasteful. It may create more streams than are actually needed 

to enable delivery. The use of mixed encoding profiles is a 

better idea, but it is complicated by the fact that some players 

may not be able to switch between different codecs (e.g. 

H.264 and HEVC), and that depending on the operator or the 

region, the distribution of video playback devices and their 

codec support capabilities may be very different. Hence 

ideally, encoding profiles should be generated customarily, 

accounting for the context of each operator or region.   

And finally, what also makes video encoding and 

delivery challenging, is that video content by itself is highly 

variable, rendering static (pre-configured) ABR encoding 

profiles suboptimal for some video sequences or over time. 

To address this issue, in recent years several techniques have 

been proposed based on the concept of dynamic generation of 

encoding profiles for each content item. These includes so-

called “per-title” [14], “content-aware” [15], or “context-

aware” [12] encoding techniques. However, in most cases, 

such techniques have been developed to work only with a 

single codec (e.g. H.264 or HEVC). The use of multiple 

codecs and specifics of fragmentation of their support have 

not yet been incorporated in problem definition addressed by 

these techniques.  

Summarizing all of the above, we note that while many 

effective techniques and standards for enabling mass-scale 

multi-screen video delivery have already been developed, 

there are still many areas where additional work can be done, 

and where additional improvements could possibly be 

obtained. Such areas include improvements in overall 

delivery system architecture design, coupling and joint 

optimization of different modules (e.g. device detection, 

transmuxing, dynamic manifest generation, encoding profile 

generation, etc.), and end-to-end system performance 

optimizations.  

The objective of this paper is to offer some results on the 

above-mentioned topics. In the next section, we will describe 

our proposed multi-screen delivery system architecture, 



highlighting commonly known and some unique elements, 

and reasoning behind them. We then focus on explaining tools 

developed for end to end optimizations. We next present 

examples of system statistics and explain performance gains 

that have been achieved. The last section offers concluding 

remarks. 

ARCHITECTURE OF CLOUD-BASED MULTI-

SCREEN VIDEO DELIVERY SYSTEM 

I. System overview 

In Figure 3, we present a high-level architecture of the 

proposed cloud-based video delivery system. It consists of 

several functional blocks, and where all exchanges, as 

common for cloud-based systems, are done by means of 

RESTful APIs.  

For example, an operator can use an API to instruct the 

system to ingest the content, transcode it, and then deliver it 

using a CDN or several CDNs of his choice.  

The transcoding of the content is done in in two steps. 

The first step is responsible for generation of an ABR 

encoding profile, followed by traditional transcoding process, 

producing a set of transcoded streams (or renditions). The 

resulting streams along with additional metadata are then 

placed on the storage used by the dynamic delivery system.  

We note, that at this point, such steams are not yet encrypted 

or packaged into final delivery formats (e.g. HLS or DASH 

segments). Instead, they are stored in intermediate format 

allowing fast transmuxing operations.   

The dynamic delivery system is essentially a layer 

performing selective transmuxing, encryption, and passage of 

final streams to CDNs for the purpose of delivery. It is also 

responsible for manifest generation. This module is 

implemented as a highly distributed system, allowing such 

operations to be performed sufficiently close to the players.  

The analytics engine is a system collecting information 

from players as well as CDNs for the purpose of system 

performance analysis and end-to-end system optimizations.  

In next sections we describe operations of elements of 

this system during video delivery process.  

II. Playback initiation 

When dynamic delivery system receives a playback request 

for a particular media content, it generates a list of manifest 

URLs, representing all possible combinations of supported 

delivery protocols, formats, and DRMs. This list of URLs is 

subsequently presented to a player. If player recognizes any 

of the formats in this list, it then tries to load the 

corresponding manifest based on URL provided. Such 

manifest, in turn, may or may not be present in the manifest 

CDN. If it is absent, which happens the first time a content in 

some particular format is requested, this results in CDN cache 

miss, bringing control back to dynamic delivery system, and 

its device detection and manifest generation modules.  

III. Device Detection 

The objective of the device detection process is to identify the 

type, capabilities and location of a playback device. For such 

purposes, the device detector uses user-agent and other fields 

in HTTP headers, present at the time manifest is requested. 

The list of properties that device detection is trying to 

establish is shown in Table 1.  

 
Property Possible values 

Device type PC, smartphone, tablet, TV, etc. 

OS type / version Android 6.0, iOS 11, etc 

Browser type/version Chrome 51, Mozilla 5.0, etc 

Geographic region of device Country code 

Video codec support H.264 baseline, H.264, HEVC, etc. 

Supports codec switching  Yes/No 

Maximum supported resolution  1080p, 540p, 480p, etc. 

Maximum supported bitrate 1.2Mbps, 4Mbps, 10Mbps, etc. 

Formats & DRM support HLS v4, PlayReady, etc. 

HDR video support Yes/No 

 

TABLE. 1: PROPERTIES THAT DEVICE DETECTION SEEKS TO ESTABLISH. 

IV. Manifest generation and rules engine 

The primary function of dynamic manifest generation is to 

match features and streams specified in the manifest to 

capabilities of the receiving device. For example, for a device 

that can only decode H.264 baseline – only such renditions 

will be retained. On the other hand, if the device can support 

HEVC, H.264, DASH, and can also switch across adaptation 

sets and codecs – then output can be an MPD with both H.264 

and HEVC adaptation sets and supplemental properties 

declaring adaptation sets as switchable.  

The other function of the manifest generator is to apply 

certain additional rules defined by operators. For example, 

based on geo location and some other parameters, an operator 

may decide to use a different CDN, or limit maximum 

resolution, bitrate, etc. The corresponding blocks providing 

for such functionality in Figure 3 are rules API and rules 

engine.  

V. Just-in-time packaging 

When manifest is finally received by the player, it starts 

retrieving media segments from the CDN. Such media 

segments, again, may or may not be present in the CDN cache. 

In case of cache misses, the CDN response brings control 

back to the dynamic delivery system and its just-in-time 

packager. In turn, just-in-time packager retrieves 

corresponding segments of the content, transmuxes them to 

the required format (e.g. TS or ISOBMFF), and passes them 

back to CDN for delivery. 

In other words, the segments in all permutations of 

formats and DRMs are never generated or stored in a 

permanent way on cloud storage. Instead, this system stores 

only single copies of content in intermediate formats. This 

significantly reduces cloud storage, bandwidth, and 

operations costs.  

VI. Cascaded CDN architecture 

To reduce frequency of at which just-in-time packagers are 

invoked the delivery system uses 2-layer CDN architecture. 

The first-layer CDN, which interfaces with packagers, is used 

for initial caching and propagation of the content to different 

regions. The second level CDNs, are then added in each 

region according to operator preferences, and provide edge 

caching as needed for delivery to end users.  



As it follows from the above description, the proposed 

architecture is designed specifically to minimize transcoding, 

transmuxing, storage, and CDN delivery costs while 

supporting plurality of existing codecs, formats, and DRMs 

as needed for multi-screen delivery.  

MEASURING AND TUNING OVERALL SYSTEM 

PERFORMANCE  

I. Bandwidth and usage statistics  

The collection of bandwidth, usage, and other relevant 

statistic in the system shown in Figure 3 is done by the 

analytics engine. It collects information from two sources: 

players and CDNs. Player’s data are needed for understanding 

of which content segments have been played, as well as to 

measure buffering and start-up latencies. CDN statistics show 

which segments have been delivered to the device and at 

which speed. By pooling such data that analytics engine is 

able to collect variety of statistics, including information 

about usage and bandwidth distributions related to different 

categories of client devices. 

Examples bandwidth distributions as measured for three 

different OTT operators are shown in Figures 4, 5, and 6. The 

associated device usage and average bandwidth statistics are 

showing in Tables 2, 3, and 4, respectively. 

 
Device type Usage [%] Average bandwidth [Mbps] 

PC 0.004 7.5654 

Mobile 94.321 3.2916 

Tablet 5.514 3.8922 

TV 0.161 5.4374 

All devices 100 3.3283 

TABLE 2: USAGE AND AVERAGE BANDWIDTH STATISTICS FOR OPERATOR 1. 

 
Device type Usage [%] Average bandwidth [Mbps] 

PC 63.49 14.720 

Mobile 6.186 10.609 

Tablet 9.165 12.055 

TV 21.15 24.986 

All devices 100 16.393 

TABLE 3: USAGE AND AVERAGE BANDWIDTH STATISTICS FOR OPERATOR 2. 

 
Device type Usage [%] Average bandwidth [Mbps] 

PC 0.0 N/A 

Mobile 0.0 N/A 

Tablet 0.0 N/A 

TV 100 35.7736 

All devices 100 35.7736 

TABLE 4: USAGE AND AVERAGE BANDWIDTH STATISTICS FOR OPERATOR 3. 

 

Based on information in the above tables and figures, it 

follows that bandwidth and usage statistics in these 3 cases 

are very different. The operator 1 streams predominantly to 

mobiles, and its effective average bandwidth across all 

devices is only 3.3Mbps. The operator 2 has a mixed 

distribution to PCs, mobiles, tablets, and TV screens. Its 

effective average bandwidth across all devices is about 

16.393Mbps. The operator 3 streams only to TVs and average 

bandwidth in this case is much higher – around 35.77 Mbps.  

 
FIGURE 4: BANDWIDTH HISTOGRAMS MEASURED FOR OPERATOR 1. 

 

 
FIGURE 5: BANDWIDTH HISTOGRAMS MEASURED FOR AN OPERATOR 2. 

 

 
FIGURE 6: BANDWIDTH HISTOGRAMS MEASURED FOR OPERATOR 3. 

THIS OPERATOR STREAMS ONLY TO CONNECTED TVS.  
 

II. Playback statistics  

The analytics engine module also collects and reports variety 

of statistics related to quality of experience (QOE) during the 

playback. Examples of such statistics collected from above 3 

operators are presented in Tables 5-7. In all cases, statistics 



are based on streaming of same test content, encoded using 9 

renditions as prescribed by standard HLS ladder for H.264 

codec [13]. This ladder is shown in Table 8.  
 

Statistics PC Mobile Tablet TV All 

Rendition 1  0.00331 0.02046 0.01024 0.00678 0.01987 

Rendition 2  0.01732 0.05157 0.03159 0.0207 0.05042 

Rendition 3  0.01738 0.1402 0.09481 0.06734 0.13757 

Rendition 4  0.05788 0.06888 0.05975 0.0676 0.06837 

Rendition 5  0.09267 0.18057 0.18157 0.07306 0.18045 

Rendition 6  0.14752 0.26691 0.28177 0.24079 0.26769 

Rendition 7  0.14315 0.18247 0.19578 0.14113 0.18313 

Rendition 8  0.15852 0.06816 0.09574 0.21973 0.06993 

Rendition 9  0.36199 0.0161 0.04503 0.16131 0.01794 

Buffering 0.00026 0.00468 0.00372 0.00156 0.00463 

Start time 2.14374 4.02900 3.46468 2.60737 3.98948 

Bandwidth 5131.21 2730.21 3174.90 4218.81 2757.25 

Resolution 861.221 628.680 676.972 794.530 631.624 

SSIM 0.97030 0.96666 0.96836 0.96879 0.96676 

TABLE 5: PLAYBACK STATISTICS FOR OPERATOR 1. 

 

Statistics PC Mobile Tablet TV All 

Rendition 1  0.00798 0.00573 0.00374 0.00022 0.00452 

Rendition 2  0.01475 0.0119 0.00937 0.00093 0.00953 

Rendition 3  0.01193 0.01635 0.01805 0.00197 0.01319 

Rendition 4  0.06136 0.05944 0.10466 0.01077 0.05341 

Rendition 5  0.10589 0.05767 0.13437 0.02598 0.06098 

Rendition 6  0.14685 0.07741 0.0953 0.05187 0.07794 

Rendition 7  0.10422 0.07573 0.07808 0.05372 0.07306 

Rendition 8  0.08825 0.07463 0.08211 0.08126 0.07756 

Rendition 9  0.45717 0.61389 0.47271 0.77318 0.62495 

Buffering 0.00136 0.00648 0.00141 0.00009 0.00435 

Start time 1.94761 1.79835 2.00201 1.60687 1.77841 

Bandwidth 3840.61 4159.37 3736.25 4655.01 4206.01 

Resolution 963.553 993.104 949.804 1053.253 1000.070 

SSIM 0.96267 0.96346 0.96236 0.96500 0.96364 

TABLE 6: PLAYBACK STATISTICS FOR OPERATOR 2 

 

Statistics TV All 

Rendition 1  0.00066 0.00066 

Rendition 2  0.00232 0.00232 

Rendition 3  0.03165 0.03165 

Rendition 4  0.02472 0.02472 

Rendition 5  0.04815 0.04815 

Rendition 6  0.01428 0.01428 

Rendition 7  0.01874 0.01874 

Rendition 8  0.02806 0.02806 

Rendition 9  0.83091 0.83091 

Buffering 0.00051 0.00051 

Start time 1.58783 1.58783 

Bandwidth 6927.70 6927.70 

Resolution 1003.316 1003.316 

SSIM 0.97133 0.97133 

TABLE 7: PLAYBACK STATISTICS FOR OPERATOR 3. 

First 9 rows in the above tables list relative frequencies 

of loading of each rendition. This is followed by buffering 

probability, start-up latency (in seconds), average bandwidth 

(in Kbps), and then average resolution (in frame heights) and 

average encoding quality (in SSIM [13]) as delivered by a 

combination of streams pulled by streaming clients.  

The reported SSIM values are initially computed during 

encoding stage, and then retrieved and aggregated into final 

average value based on stream load statistics. Such statistics 

are provided separately to each category of devices, as well as 

in combined form, averaged across all devices (last column). 
 

 

Rendition Profile Resolution Framerate Bitrate SSIM 

1 High 416x234 23.976 145 0.92231 

2 High 640x360 23.976 365 0.94337 

3 High 768x432 23.976 730 0.95776 

4 High 768x432 23.976 1100 0.96788 

5 High 960x540 23.976 2000 0.97148 

6 High 1280x720 23.976 3000 0.96931 

7 High 1280x720 23.976 4500 0.9753 

8 High 1920x1080 23.976 6000 0.96861 

9 High 1920x1080 23.976 7800 0.97217 

Storage  25640  

TABLE 8: STANDARD HLS ENCODING LADDER & SSIM QUALITY LEVELS 

ACHIEVED FOR CONTENT USED IN THE ABOVE EXPERIMENT. 
 

As easily noticed, despite the fact that content is 

identically encoded, the quality of experience delivered by 

these 3 operators is very different. The operator 3 pulls mostly 

top bitrate 1080p rendition (with probability of about 0.83), 

delivering on average about 1003 lines of resolution and 

encoding quality of about 0.971 SSIM. In case of operator 2, 

the probability of loading of top-most rendition drops to about 

0.62 considering all devices, and just about 0.43 for mobiles. 

This results in lower resolutions (about 938 lines across all 

devices and only 867 lines for mobiles), as well as lower 

encoding quality, as ladder shown in Table 8 progressively 

drops encoding quality for lower resolutions. Finally, in the 

case of operator 1, the situation is even worse. Renditions 3, 

5, 6, and 7 become most commonly used, resulting average 

delivered resolution of about 631 lines (628 for mobiles), and 

encoding quality of about 0.966 SSIM.  

III. Means for tuning the system 

The system depicted in Figure 3 includes several tools and 

means by which it can be adjusted or tuned to achieve best 

performance given each operator’s context and needs.  

The analytics engine as described above provides 

relevant set of performance statistics. Such statistics can be 

localized to regions, jobs, content, delivery devices, CDNs, 

etc. They help operators to monitor health and efficiency of 

the system.  

The use of rules API and rules engine allows operators to 

select local CDNs and distribute traffic between them 

dynamically without disruption of operations. It also allows 

operators to impose limits and effectively add or remove some 

streams that can be delivered. The addition of streams, 

especially low-bitrate ones, may be considered as means for 

reducing buffering probability or load times. On the other 

hand, removal of some streams may be considered for 

reducing bandwidth usage or for improving CDN cache 

performance.  

Finally, the system in Figure 3 also allows encoding 

profile generation for each new content item to be done 

dynamically, account for both characteristics of the content as 

well as existing bandwidth, usage, and playback statistics for 

each operator. We call such profile generation and encoding 

process context-aware encoding or CAE. This step effectively 

closes the feedback loop provided by the analytics engine, and 

allows encoding of new content to be done better, accounting 

for current context (delivery and playback statistics) of each 

operator.  



IV. Context-aware profile generation 

When CAE profile generator is activated, it analyzes the 

content first, trying to model the space of quality-rate 

operating points achievable for a given codec and the content. 

This is followed by an optimization process, which selects a 

set of rates, resolutions, and other parameters for ABR 

encoding profiles, trying to achieve sufficient level of quality 

while minimizing bandwidth, storage, compute, and other 

resources required for delivery.  

Importantly, in such optimization process, the quality 

estimates for each possible resolution and bitrate come from 

prior content analysis, and the estimates of stream load 

probabilities at each rate come from bandwidth statistics 

measured for each client. In computing final optimization cost 

expression, CAE generator aggregates estimates obtained for 

each type of client according to usage distribution, also 

provided by the analytics module. In other words, CAE profile 

generation is really an end-to-end optimization process for 

multi-device /multi-screen delivery.  

The formal mathematical description of this optimization 

problem can be found in [12]. Reference [17] extends it to a 

case of designing profiles using multiple codecs and 

fragmentation of their support across different devices.  

EXAMPLES OF OPTIMIZATIONS 

In this section we show few examples of optimizations 

achieved by using above described tools. Primarily, we will 

focus on optimizations to operator contexts and content.  

I. Adaptations to different networks and devices 

Let us now again consider 3 operators with bandwidth and 

usage statistics as presented in Figures 4-6 and Tables 2-4, 

respectively. Same test video sequence, is used in all cases. 

CAE encoding profiles generated for this sequence given 

statistics from each of the operators are shown in Tables 9-11.  

In all cases, the CAE profile generator was given the 

same overall constraints that generally match characteristics 

of the HLS reference encoding ladder (see Table 8). This 

includes constraints on minimum and maximum bitrates, 

constraint on the maximum number of renditions and 

maximum change between bitrates in the encoding ladder, 

constraints on aspect ratios, framerates, and set of resolutions 

that can be used, etc.  

However, as can be observed in Tables 9-11, CAE-

generated profiles for each operator are somewhat different. 

For operator 1, it generated 7 renditions, with high density of 

points around 0-1 Mbps range. For operator 2, it also 

generated 7 renditions, however with faster rump towards 

higher resolutions and bitrates. Notice, specifically, that 

instead of selecting 540p resolution at 4th rendition, it selects 

576p. Finally, in cases of operator 3, CAE generated only 5 

renditions, which are even more sparsely placed apart. Such 

use of fewer renditions leads to lower transcoding costs and 

better CDN efficiency. 

Besides the changes in the numbers of renditions, we also 

notice significant changes in total bitrates occupied by 

composition of all renditions in encoding profiles. Thus, all 

CAE generated profiles require significantly lower amount of 

storage.  
 

 

Rendition Profile Resolution Framerate Bitrate SSIM 

1 Baseline 320x180 30 125 0.93369 

2 Baseline 480x270 30 223.08 0.93793 

3 Main 640x360 30 398.11 0.94636 

4 Main 960x540 30 774.78 0.94953 

5 Main 1280x720 30 1549.5 0.95637 

6 High 1600x900 30 2765.3 0.96105 

7 High 1920x1080 30 4935.1 0.96576 

Storage  10771  

TABLE 9: CAE-GENERATED ENCODING LADDER FOR OPERATOR 1. 
 

Rendition Profile Resolution Framerate Bitrate SSIM 

1 Baseline 320x180 30 125 0.93338 

2 Baseline 480x270 30 239.71 0.94122 

3 Main 640x360 30 469.54 0.95202 

4 Main 1024x576 30 939.08 0.95221 

5 Main 1280x720 30 1568.8 0.95658 

6 High 1600x900 30 2765.3 0.96105 

7 High 1920x1080 30 4935.1 0.96576 

Storage  11026  

TABLE 10: CAE-GENERATED ENCODING LADDER FOR OPERATOR 2. 
 
 

Rendition Profile Resolution Framerate Bitrate SSIM 

1 Baseline 320x180 30 125 0.93447 

2 Baseline 512x288 30 307.42 0.94855 

3 Main 960x540 30 803.59 0.95050 

4 Main 1280x720 30 1727.8 0.95864 

5 High 1920x1080 30 5050.7 0.96599 

Storage  8014.6  

TABLE 11: CAE-GENERATED ENCODING LADDER FOR OPERATOR 3. 
 

One extra notable difference between CAE profiles and 

reference HLS profile (Table 8) is that CAE uses mixed set of 

H.264 profiles, starting with Baseline, followed by Main and 

High profiles. In contrast, HLS ladder, recommended in 

Apple deployment guidelines [13], uses only High profile 

across all renditions. CAE generated profiles can therefore 

reach a much broader set of playback devices, including those 

that can only decode H.264 baseline.  

Next, in Tables 12-14 we present playback statistics as 

measured for CAE encoded content after delivery across all 

three operators. The summary of relative differences between 

these statistics and ones obtained for reference HLS profile 

(cf. Tables 5-7) are presented in Table 15.  

 
Statistics PC Mobile Tablet TV All 

Rendition 1  0.00084 0.00678 0.00398 0.00247 0.00662 

Rendition 2  0.00359 0.01851 0.00856 0.00593 0.01794 

Rendition 3  0.01834 0.07164 0.04614 0.02805 0.07016 

Rendition 4  0.04087 0.13809 0.09536 0.08767 0.13564 

Rendition 5  0.10114 0.17519 0.17164 0.08743 0.17485 

Rendition 6  0.21248 0.37255 0.39131 0.32508 0.3735 

Rendition 7  0.62253 0.21339 0.27992 0.46209 0.21747 

Buffering 0.00021 0.00385 0.00309 0.00128 0.00382 

Start time 2.56661 3.95220 3.49462 2.91179 3.92152 

Bandwidth 3857.24 2504.93 2832.92 3399.98 2524.53 

Resolution 966.381 801.556 851.838 915.236 804.521 

SSIM 0.96266 0.95797 0.95948 0.96119 0.95806 

TABLE 12 PLAYBACK STATISTICS FOR OPERATOR 1 AFTER CAE 

OPTIMIZATION. 
 



 

 

 
Statistics PC Mobile Tablet TV All 

Rendition 1  0.00248 0.00357 0.00153 0.00008 0.00258 

Rendition 2  0.01192 0.00604 0.00513 0.00037 0.00512 

Rendition 3  0.01402 0.01654 0.01427 0.00158 0.01301 

Rendition 4  0.03352 0.03715 0.05427 0.00538 0.03177 

Rendition 5  0.11148 0.07551 0.16928 0.02499 0.07564 

Rendition 6  0.20711 0.1134 0.14396 0.07515 0.11391 

Rendition 7  0.61811 0.74131 0.61015 0.89236 0.75362 

Buffering 0.00136 0.00648 0.00141 0.00009 0.00435 

Start time 1.94563 1.79721 2.00044 1.60611 1.77729 

Bandwidth 3844.52 4162.01 3739.18 4657.22 4208.66 

Resolution 963.553 993.104 949.804 1053.25 1000.07 

SSIM 0.96274 0.96352 0.96242 0.96507 0.96370 

TABLE 13 PLAYBACK STATISTICS FOR OPERATOR 2 AFTER CAE 

OPTIMIZATION. 

 
Statistics TV All 

Rendition 1  0.00064 0.00064 

Rendition 2  0.00555 0.00555 

Rendition 3  0.04259 0.04259 

Rendition 4  0.0785 0.0785 

Rendition 5  0.87229 0.87229 

Buffering 0.00043 0.00043 

Start time 1.56135 1.56135 

Bandwidth 4579.37 4579.37 

Resolution 1023.74 1023.74 

SSIM 0.96464 0.96464 

TABLE 14 PLAYBACK STATISTICS FOR OPERATOR 3 AFTER CAE 

OPTIMIZATION. 
 

Statistic  Relative changes [%] for each operator 

Operator 1 Operator 2 Operator 3 
Renditions -22.222 -22.222 -44.444 

Storage  -57.991 -56.932 -68.741 

Bandwidth -8.4402 -31.307 -33.897 

Resolution +27.373 +6.5968 +2.0362 

SSIM -0.9003 -0.7447 -0.6895 

Buffering -1.7494 -1.0493 -1.5686 

Start time -5.7035 -1.0081 -1.6676 

TABLE 15 EFFECTS OF CAE OPTIMIZATION FOR 3 OPERATORS. 
 

Table 15 presents relative change values, computed for 

average numbers reported across all devices for each operator. 

The negative values mean that the use of CAE lead to 

reduction in value of the respective parameter by given 

percentage. The positive values imply the increase in 

parameter value due to the use of CAE.  

Based on information presented in Table 15, it can be 

observed that the use of CAE optimizations resulted in 

significant savings of resources in all 3 cases. The number of 

renditions, and consequently transcoding/compute costs were 

reduced by 22.2 to 44.4%. The amount of storage was reduced 

by 56.9 to 68.7%, reducing cloud storage and bandwidth 

costs. The changes in average bandwidth use are also 

significant, but more depended on operator’s context. For 

example, for operators 2 and 3, which deliver mostly over 

high speed networks, the bandwidth savings ranged from 31.3 

to 33.9%. For operator 1, delivering over very slow 

connections (with average bandwidth around 3.3 Mbps) the 

reductions in average bandwidth use were more modest – 

about 8.44%. However, the average resolution delivered to 

this operator become over 27% higher (804 lines on average 

vs 631), and average start-up latency also got decreased by 

over 5.7%. In other words, the use of CAE optimizations for 

operator 1 have resulted in the increase of quality of 

experience, in addition to savings in bandwidth, storage, and 

compute costs. 

All such optimizations become possible by tuning 

encoding profiles to each of the operator’s network 

distributions and distributions of playback time between 

different categories of receiving devices.  

II. Adaptations to different types of content  

As discussed earlier, as part of overall optimization process, 

CAE profile generator also adapts profiles to specific 

properties of each input content. For example, for “easier” to 

encode content, such as cartoons or screen captures, CAE may 

assign lower bitrates or higher resolutions at same bitrates, 

while for more “complex” content, such as high-action sports 

or movies, it may assign higher bitrates or lower resolutions 

at same bitrates.   

To estimate average savings that can be achievable for 

different categories of content, we have performed a study, 

using 500 video assets, with combined duration of over 120 

hours, and representing 33 different categories, such as action 

movies, sports, documentary, etc. 

 
Category Relative changes [%] due to using CAE 

Renditions Storage Bandwidth Resolution 

Action -35.05 -77.28 -59.16 +3.57 

Adventure -29.63 -70.17 -51.33 +3.32 

Comedy -25.12 -62.16 -41.28 +2.33 

Drama -32.36 -73.29 -55.83 +3.55 

Scifi -31.38 -71.89 -53.17 +3.27 

Cartoon -30.15 -68.82 -47.71 +2.93 

Video game -29.2 -67.76 -46.17 +3.17 

Baseball -21.57 -61.09 -50.89 +0.76 

Basketball -22.1 -57.82 -34.15 +1.72 

Boxing -23.71 -65.33 -43.03 +3.1 

Cricket -14.29 -58.12 -50.13 +0.97 

Cycling -23.11 -58.92 -36.55 +2.35 

Field hockey -22.22 -51.57 -22.66 +1.1 

Football -28.57 -79.12 -52.25 +1.69 

Golf -28.57 -79.38 -74.2 +1.69 

Gymnastics -26.1 -65.45 -44.01 +2.79 

Hockey -22.22 -51.26 -20.39 +0.08 

Mixed sports -23.63 -55.47 -29.22 +1.35 

Racing -28.57 -74.68 -66.96 +1.5 

Running -23.3 -56.66 -31.99 +2.52 

Squash -27.56 -67.18 -47.11 +3.22 

Swimming -22.22 -50.04 -19.67 +0.17 

Tennis -18.72 -61.04 -51.44 +1.07 

Weightlifting -31.44 -72.6 -51.66 +3.78 

Documentary -25.72 -59.85 -34.19 +2.19 

Game show -28.16 -65.18 -40.95 +3.02 

Interview -37.33 -81.17 -74.2 +1.6 

Kids channel -24.75 -59.52 -34.04 +1.69 

Talk show -36.07 -77.76 -59.02 +3.99 

News -25.97 -62.36 -39.64 +2.24 

Reality TV -24.94 -58.51 -33.52 +2.46 

Sitcom -31.49 -71.93 -54.04 +3.23 

Soap opera -34.92 -76.61 -58.83 +3.8 

Overall -28.42 -65.64 -43.76 +2.65 

TABLE 16: AVERAGE SAVINGS AS MEASURED FOR DIFFERENT CONTENT 

CATEGORIES, OPERATOR 2. 



 

Such content was then encoded using standard HLS 

profile (Table 8) and by using CAE. Both versions of the 

content were delivered to the viewers and playback statistics 

have been captured. Same operator was used in both tests.  

The results are summarized in Table 16. All numbers 

represent relative changes between respective statistics 

obtained for encodings produced using default HLS ladder 

(Table 8) vs CAE. For compactness of presentation, only the 

changes in renditions, storage, bandwidth, and resolution are 

presented. The changes in other statistics were minor (<2%). 

By looking at data in Table 16, it can be observed, that CAE 

improvements are significant across all categories of content. 

We also note, that for some categories of content, such as 

“Interviews” or “Golf”, the changes in bandwidth are 

extremely high (we see savings of about 74%), while for some 

other categories, such as “Swimming” or “Hockey”, such 

savings are considerably lower (19-22%). The savings in 

storage are more consistent across all categories of content. 

The changes in the numbers of renditions are also more 

consistent across all categories of content. 

The above study was produced using H.264 encoder, and 

for SDR content. In our experience, we also noted that CAE 

savings when using HEVC encoders are generally similar in 

magnitude and have same general dependency on the 

characteristics of the content.  

III. Multi-codec profile optimizations   

One of the features of CAE profile generator is the capability 

to generate ABR profiles for plurality of existing codecs. In 

this case, the generator also uses information about support of 

such codecs by different categories of receiving devices. Such 

information is supplied as part of operator usage and 

bandwidth statistics, provided by analytics engine.  

The use of multi-codec profile generation leads to 

additional savings in the total number of renditions and 

quality gains achievable by clients that can switch between 

the codecs.  

For example, let us consider a set of mixed H.264+HEVC 

ladder points presented in Figure 7. Here, by green and red 

lines we plot quality-rate functions achievable for a given 

content by HEVC and H.264 codecs respectively. The set of 

H.264 streams is connected by an orange line, forming a 

“staircase” of quality levels achievable by the H.264-only 

client. Similarly, the set of HEVC streams is connected by 

gray line, forming another “staircase” representing quality 

levels achievable by HEVC-only clients. The dotted blue line 

is used to connect points that may be used by clients that can 

switch between both codecs. By following the shape of this 

blue staircase, it becomes immediately obvious that 

hybrid/switchable clients should be able to achieve better 

performance than the other clients, as they effectively operate 

with a finer-grain ladder, delivering progressively better 

quality. But naturally, to enables such improvements, the 

locations of H.264 and HEVC streams need to be chosen 

carefully, and in consideration of quality-rate characteristics 

of both codecs for given content.  

 

 

FIGURE 7: H.264 AND HEVC-ENCODING LADDERS AND QUALITY LEVELS 

ACHIEVABLE BY DIFFERENT TYPES OF CLIENT DEVICES.  

 

Additional results and discussion about how multi-codec 

profiles can be optimally generated will be presented in [17]. 

 

CONCLUSIONS 

We have described an architecture of a large-scale multi-

screen OTT video delivery system. This system was designed 

for effective handling of plurality of codecs, DRMs, and 

formats as needed for delivery to a population of client 

devices with different capabilities. We have also described 

specific tools and techniques that we have added to optimize 

end-to-end performance of such system. The effectiveness of 

the proposed techniques has been illustrated by examples of 

system statistics before and after optimizations.  
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